
Element level semantic matching using WordNet

Mikalai Yatskevich and Fausto Giunchiglia

Dept. of Information and Communication Technology,
University of Trento,

38050 Povo, Trento, Italy
{fausto,yatskevi}@dit.unitn.it

Abstract. We think of Match as an operator which takes two graph-like
structures and produces a mapping between semantically related nodes.
The matching process is essentially divided into two steps: element level
and structure level. Element level matchers consider only labels of nodes,
while structure level matchers start from this information to consider the
full graph. In this paper we present and evaluate, on the large scale real
world dataset, twelve new element level semantic matchers. The matchers
exploit WordNet as a background knowledge source, and return seman-
tic relations (e.g., equivalence, more general) between concepts rather
than similarity coefficients between labels in the [0, 1] range. The twelve
element level semantic matchers are evaluated against seven state of the
art matching systems. The results of the matchers are found comparable
with the results of the matching systems.

1 Introduction

We think of matching as the task of finding semantic correspondences between
elements of two graph-like structures (e.g., conceptual hierarchies, database
schemas or ontologies). Matching has been successfully applied to many well-
known application domains, such as schema/ontology integration, data ware-
houses, and XML message mapping.

The matching task is often articulated into two basic steps, namely element
and structure level matching (see [9, 26, 29] for a thorough discussion). Element
level matchers consider only the information at the atomic level (e. g., the in-
formation contained in elements of the schemas), while structure level matchers
consider also the information about the structural properties of the schemas.

Our goal in this paper is to describe a set of element level semantic match-
ers (i.e, the matchers that return a semantic relations (e.g., equivalence, more
general, disjointness) rather then similarity coefficients [0..1]) and analyze their
performance on the large scale real world dataset. The matchers exploit Word-
Net [21], a large repository of English lexical items, as a background knowledge
source. We distinguish between two categories of matchers namely knowledge
based and gloss based matchers. Knowledge based matchers produce the se-
mantic relations exploiting the structural properties of WordNet often combined
with statistics collected from large scale corpora. Some of the knowledge based



matchers are based on well known semantic similarity measures. The gloss based
matchers exploit WordNet concept descriptions (or glosses). To the best of our
knowledge gloss based matchers have never been applied to schema/ontology
matching tasks, while some of knowledge based matchers, although being im-
plemented within the matching systems, have never been evaluated on the com-
monly accepted datasets on its own.

The main contributions of the paper include:

– (i) a set of twelve new element level semantic matchers that exploit WordNet
as a background knowledge source. These matchers encompass both new and
well known semantic similarity measures and techniques.

– (ii) a thorough evaluation of the semantic element level matchers on a large
scale real world dataset along with a comparative analysis of the evalua-
tion results against the results of seven state of the art matching systems
participated in the ontology matching evaluation OAEI-2006 [7].

The rest of the paper is organized as follows. Section 2 defines the basic
notions while Section 3 and Section 4 are dedicated to knowledge and gloss
based semantic element level matchers respectively. The evaluation results are
discussed in Section 5. Section 6 provides an overview of the related work while
Section 7 concludes the paper.

2 Semantic matching

2.1 Motivating scenario

In order to motivate the matching problem and illustrate one of the possible
situations which can arise in the data integration task let us use the (parts of the
Google and Yahoo) directories depicted in Figure 1. Suppose that the task is to

Fig. 1. Parts of Google and Yahoo directories

integrate these two directories. A first step in the integration process is to identify



the matching candidates. For example, ShoppingO1 can be assumed equivalent to
ShoppingO2, while Board GamesO1 is less general than GamesO2. Hereafter the
subscripts designate the directory (either O1 or O2) of the node considered. Once
the correspondences between two schemas have been determined, the next step
has to generate query expressions that automatically translate data instances of
these schemas under an integrated schema.

We think of a mapping element (or mapping) as a 4-tuple 〈IDij , n1i, n2j , R〉,
i = 1, ..., N1; j = 1, ..., N2; where IDij is a unique identifier of the given mapping
element; n1i is the i-th node of the first graph, N1 is the number of nodes in the
first graph; n2j is the j-th node of the second graph, N2 is the number of nodes
in the second graph; and R specifies a similarity relation of the given nodes.
For instance, in this paper we consider equivalence (≡); more general (⊒); less
general (⊑); disjointness (⊥) relations. The semantics of the above relations are
the obvious set-theoretic semantics. When none of the relations holds, the special
Idk (I do not know) relation is returned. We define matching as the process of
discovering mappings between two graph-like structures through the application
of a matching algorithm.

2.2 Element level semantic matching

The matching process is often articulated into two basic steps, namely element
and structure level matching (See [26, 29] for thorough discussion):

– Element level matchers consider only the information at the atomic level (e.
g., the information contained in elements of the schemas);

– Structure level matchers often aggregate the results of the several element
level matchers and consider also the information about the structural prop-
erties of the schemas.

Element level semantic matchers return semantic relations (≡,⊑,⊒,⊥,Idk)
rather then similarity coefficients [0..1] which are often considered as equivalence
relation with certain level of plausibility or confidence (see [9] for detailed discus-
sion). In this paper we consider two classes of element level semantic matchers,
namely:

– Knowledge based matchers take in input two concept (or synset) identifiers
defined in WordNet. They produce semantic relations by exploiting its struc-
tural properties. In some cases they combine the knowledge derived from
WordNet with statistics collected from large scale corpora. Often knowledge
based matchers are based on either similarity or relatedness measures. If
the value of the measure exceeds the given threshold the certain semantic
relation is produced. Otherwise Idk is returned.

– Gloss based matchers, similarly to knowledge based matchers, take two con-
cept (synset) identifiers as an input and return the semantic relation hold-
ing between them. However, gloss based matchers differ in that they use
the information contained in natural language concept descriptions such as
WordNet glosses.

Table 1 illustrates element semantic level matchers.



Table 1. Element level semantic matchers

Matcher name Matcher type Exploits

The WordNet matcher(WN) WordNet structure
The Leacock Chodorow matcher(LCM)

The Resnik matcher(RM)
The Jiang Conrath matcher(JCM) Knowledge based WordNet structure +

The Lin matcher(LM) Corpora statistics
The Hirst-St.Onge matcher(HOM)
The Context Vectors matcher(CV)

The WordNet Gloss matcher(WNG)
The WordNet Extended Gloss matcher(WNEG)

The Gloss Comparison matcher(GC) Gloss based WordNet glosses
The Extended Gloss Comparison matcher(EGC)
The Semantic Gloss Comparison matcher(SGC)

3 Knowledge based matchers

3.1 The WordNet matcher

WordNet [21] is a lexical database which is available online1 and provides a
large repository of English lexical items. WordNet contains synsets (or senses),
structures containing sets of terms with synonymous meanings. Each synset
has a gloss that defines the concept that it represents. For example, the words
night, nighttime and dark constitute a single synset that has the following gloss:
the time after sunset and before sunrise while it is dark outside. Synsets are
connected to one another through explicit semantic relations. Some of these

Table 2. Relations in WordNet

Relation Description Example

Hypernym is a generalization of motor vehicle is a hypernym of car

Hyponym is a kind of car is a hyponym of motor vehicle

Meronym is a part of lock is a meronym of door

Holonym contains part door is a holonym of lock

Troponym is a way to fly is a troponym of travel

Antonym opposite of stay in place is an antonym of travel

Attribute attribute of fast is an attribute of speed

Entailment entails calling on the phone entails dialing

Cause cause to to hurt causes to suffer

Also See related verb to lodge is related to reside

Similar to similar to evil is similar to bad

Participle of is participle of stored is the participle of to store

Pertainym pertains to radial pertains to radius

1 http://wordnet.princeton.edu/



relations (hypernymy, hyponymy for nouns and hypernymy and troponymy for
verbs) constitute kind-of (or is-a) and part-of (holonymy and meronymy for
nouns) hierarchies. For example, tree is a kind of plant, tree is hyponym of plant

and plant is hypernym of tree. Analogously, from trunk is a part of tree, we have
that trunk is meronym of tree and tree is holonym of trunk. The relations of
WordNet 2.0 are presented on Table 2.

Figure 2 shows an example of nouns taxonomy.

Fig. 2. An example of WordNet nouns taxonomy

The WordNet matcher is a knowledge based matcher. It translates the re-
lations provided by WordNet to semantic relations according to the following
rules:

– A ⊑ B if A is a hyponym, meronym or troponym of B;

– A ⊒ B if A is a hypernym or holonym of B;

– A ≡ B if they are connected by synonymy relation or they belong to one
synset (night and nighttime from abovementioned example);

– A ⊥ B if they are connected by antonymy relation or they are the siblings
in the part of hierarchy.



Notice that hyponymy, meronymy, troponymy, hypernymy and holonymy
relations are transitive. Therefore, for example, from Figure 2 we can derive
that Person⊑LivingThing.

If none of the abovementioned relations holds among the two input synsets
Idk relation is returned.

Table 3 illustrates WordNet matcher results.

Table 3. Semantic relations produced by the WordNet matcher

Source label Target label Semantic relation

car minivan ⊒

car auto ≡

tail dog ⊑

red pink Idk

3.2 The Leacock Chodorow matcher

The Leacock Chodorow matcher exploits Leacock Chodorow semantic similarity
measure [16]. It returns ≡ if the measure exceeds the given threshold and Idk

otherwise. The measure is based on counting the number of links between two
input synsets. Intuitively, the shorter the path, the more related are the concepts
under consideration. Leacock and Chodorow considered the noun is a hierarchy.
They proposed the following formula for estimating the similarity of two synsets:

simlc(c1, c2) = − ln

(

spath (c1, c2)

2 · D

)

(1)

where spath(s1, s2) is the length of the shortest path between the two synsets c1

and c2 and D is the depth of the tree.
The measure has a lower bound of 0 and upper bound defined as follows

Ub = − ln(1/(2 · maxDepth)) (2)

where maxDepth is a maximum depth of the taxonomy.
Table 4 illustrates Leacock Chodorow matcher results with threshold 3.0.

Table 4. Semantic relations produced by the Leacock Chodorow matcher

Source label Target label Semantic relation

autograph signature ≡

actor actress ≡

dog cat Idk

sky atmosphere Idk



3.3 The Resnik matcher

The Resnik matcher exploits Resnik semantic similarity measure [27]. It returns
≡ if the measure exceeds the given threshold and Idk otherwise. This measure is
based on the concept of information content [27]. The information content de-
fines the generality or specificity of a concept in a certain topic. The information
content of the given concept is calculated as follows. Firstly the frequency2 of
concept occurrences FC in the given text corpus is calculated. Then the frequen-
cies of all subsuming concepts are calculated and added to FC . Thus the root
concept will count the occurrences of all the concepts in its taxonomy. In the
case of WordNet synsets the frequency counts are precomputed for wide range
of large scale corpora. We exploited Brown corpus of standard american english

[15].
The information content of a concept c is defined as follows:

IC(c) = − ln

(

freq(c)

freq(root)

)

(3)

where freq(c) and freq(root) are, respectively, the frequencies of the concept c

and the root of the taxonomy. Notice that the fraction represents the probability
of occurrence of the concept in a large corpus.

Resnik defines the semantic similarity of the two concepts as the amount of
information they share in common. To be more precise, the amount of informa-
tion two concepts share in common is equal to the value of information content
of their lowest common subsumer, that is the lowest node in the taxonomy that
subsumes both concepts. For example, the lowest common subsumer of cat and
dog is carnivore. Therefore, Resnik measure is defined as follows:

simres(c1, c2) = IC (lcs (c1, c2)) (4)

where IC is the information content of a concept and lcs(c1, c2) is the lowest
common subsumer of concepts c1 and c2.

This measure has a lower bound of 0 and no upper bound.
Table 5 illustrates Resnik matcher results with threshold 10.0.

Table 5. Semantic relations produced by the Resnik matcher

Source label Target label Semantic relation

robot android ≡

actor actress Idk

dog cat Idk

2 Here and further in the paper, following the natural language understanding com-
munity tradition, we treat frequency as count (i.e., frequency of concept occurrences
is a number of times the given concept occurs in the corpora).



3.4 The Jiang Conrath matcher

The Jiang Conrath matcher exploits Jiang Conrath semantic similarity measure
[14]. It returns ≡ if the measure exceeds the given threshold and Idk otherwise.
This measure incorporates both information content of the concepts and the
information content of their lowest common subsumer. Originally Jiang Conrath
defined the distance between two concepts as follows:

distancejc(c1, c2) = IC(c1) + IC(c2) − 2 · IC (lcs (c1, c2)) (5)

where IC is the information content of a concept and lcs finds the lowest common
subsumer of two given concepts.

Therefore the similarity of two concepts can be represented as

simjc(c1, c2) =
1

distancejc(c1, c2)
(6)

The formula has two special cases:

– In the first case all information content values are equal to 0:

IC(c1) = IC(c2) = IC (lcs (c1, c2)) = 0 (7)

This happens when both concepts and their lowest common subsumer are
either the root node or have a frequency count of 0. In both cases 0 similarity
is returned.

– The second case is when

IC(c1) + IC(c2) = 2 · IC (lcs (c1, c2)) (8)

which usually happens when

IC(c1) = IC(c2) = IC (lcs (c1, c2)) (9)

In this case c1 and c2 are the same concept and so we would like to return
a maximum value of relatedness.

This measure has a lower bound of 0 and the upper bound

Ub =
1

− ln((froot − 1)/froot)
(10)

where froot is the frequency of the taxonomy root.
The pseudo code for the algorithm is presented in Figure 3.
ID (line 2) is the unique identifier, lemmas (line 3) is the list of synonyms

that represent this synset, gloss (line 4) is the definition associated to that
synset and relations (line 5) is a list of pointers to other synsets connected to
this by a WordNet relation. maxValue (line 12) is the upper bound.

Firstly the shortest path between two synsets is computed (line 7). Then
the lowest common subsumer of the input synsets is obtained (line 8). The
information content values are computed for both synsets and lowest common
subsumer in lines 6-8. Finally after handling the special cases (lines 12-15) the
distance (line 16) and similarity (line 17) are computed.

Table 6 illustrates Jiang Conrath matcher results with 1.0 threshold.



1 struct Synset

2 String ID;

3 String[] lemmas;

4 String gloss;

5 String[] relations;

6 float match( Synset synset1, Synset synset2 )

7 String shortestPathId = getShortestPath( synset1, synset2 );

8 Synset lcs = getLowCommonSubsumer( shortestPathId );

9 float ic_lcs = getInformationContent( lcs );

10 float ic_s1 = getInformationContent( synset1 );

11 float ic_s2 = getInformationContent( synset2 );

12 if ( ic_s1 == ic_s2 && ic_s1 == ic_lcs && ic_lcs == 0)

13 return 0;

14 if ( ic_s1 + ic_s2 == 2*ic_lcs )

15 return maxValue;

16 float distance = ic_s1 + ic_s2 - 2*ic_lcs;

17 return 1/distance;

Fig. 3. The Jiang Conrath matcher pseudo code

Table 6. Semantic relations produced by the Jiang Conrath matcher

Source label Target label Semantic relation

trip hallucination ≡

actor actress ≡

dog cat Idk

3.5 The Lin matcher

The Lin matcher exploits Lin semantic similarity measure [18]. It returns ≡ if
the measure exceeds the given threshold and Idk otherwise. This measure is also
based on information content. It is defined as follows:

simlin(c1, c2) =
2 · IC (lcs (c1, c2))

IC(c1) + IC(c2)
(11)

In the case of IC(c1) = 0 and IC(c2) = 0, 0 similarity is returned.
Table 7 illustrates the Lin matcher results with 0.9 threshold.

3.6 The Hirst-St.Onge matcher

The Hirst-St.Onge matcher exploits Hirst-St.Onge semantic similarity measure
[12]. It returns ≡ if the measure exceeds the given threshold and Idk otherwise.
This measure in contrast to information content based measures is not restricted
to WordNet noun hierarchies.

Hirst and St.Onge classified links in WordNet in 3 different categories:



Table 7. Semantic relations produced by the Lin matcher

Source label Target label Semantic relation

robot android Idk

actor actress ≡

dog cat Idk

– upward (e.g. hypernym);
– downward (e.g. holonym);
– horizontal (e.g. antonym);

According to them two words are connected by a strong relation if:

– they both belong to the same synset;
– they belong to synsets connected by a horizontal link;
– one is a compound word, the second one is substring of the first while their

synsets are connected by an is a relation;

For strongly related words relatedness is computed as 2·C, where C is a constant
used in the formula for medium-strong relations. Its default value is 8, so the
coefficient is equal to 16.

A medium-strong relation exists if the two synsets are connected by a valid

path in WordNet. A path is considered valid if it is not longer than 5 links and
conforms to one of the eight predefined patterns. The relatedness between two
words connected by a medium-strong relation corresponds to the weight of the
path which is given by the following formula:

Weight = C − PathLength − k · ChangesInDirection (12)

where C and k are constants and, in our case they are assumed to be equal 8
and 1 respectively. The pseudo code below illustrates the algorithm. In order
to compute the relatedness of two concepts first the type of relation holding
between them is determined (line 2). Then the given relation is compared with
existing patterns (line 4).

1 float match( Synset synset1, Synset synset2 )

2 if ( checkStrongRelationship( synset1, synset2 ))

3 return 2*C;

4 int weight = getMedStrongWeight( 0, 0, 0, synset1, synset2 );

5 return weight;

Fig. 4. The Hirst-St.Onge matcher pseudo code

checkStrongRelationship (line 2) takes in input the two synsets and re-
turns true if they fulfill one of the requirements of Strong relations and false
otherwise.



getMedStrongWeight (line 4) takes in input two synsets and three zero values,
that are respectively defined as state, distance and chdir, and returns the
weight as stated in Eq. 12 . Basically it searches recursively for a path from
synset1 to synset2, taking trace of the distance, changes in direction (chdir)
so far and giving the state value for the next call. There are 8 possible states
(from 0 to 7) in which the function may find itself, every state defines the rules
the path has to follow. In particular, they specify the categories of links used in
the last iteration, the ones that are allowed in the current step and the ones to
use as next, taking into account the possible changes in direction.

This measure has a lower bound of 0 and an upper bound of 16.
Table 8 illustrates Hirst-St.Onge matcher results with threshold 4.0.

Table 8. Semantic relations produced by the Hirst-St.Onge matcher

Source label Target label Semantic relation

school private school ≡

actor actress ≡

dog cat Idk

sky atmosphere Idk

3.7 The Context Vectors matcher

The Context Vectors matcher exploits a context vectors semantic similarity mea-
sure [25]. It returns ≡ if the measure exceeds the given threshold and Idk oth-
erwise. This measure is based on context vector notion introduced by Schütze
in [28]. Originally exploited for word sense disambiguation context vectors was
adapted for semantic similarity computation exploiting WordNet in [25].

The context vectors computation process starts from selection of the highly
topical words which will define the dimensions of our word space. For our ex-
periments we used WordNet glosses as a corpus. We stemmed all the words in
the glosses and filtered out the function words. Afterwards we counted the fre-
quencies of the words in the corpus. Then we cut off the words with frequencies
lower than 5 and higher than 1000. This allowed us to keep the most informative
words. We also added a tf-idf cutoff with an upper bound of 1500. tf-idf is a
weight used to evaluate how important a word is to a document (or gloss in our
case). The formula we used is as follows

tfidf = tf · ln (idf) (13)

where tf is the frequency of occurence of the word and idf is defined as follows

idf =
nr.documents

docFrequency
(14)

We used nr.documents as the number of glosses and docFrequency is the number
of glosses in which our word appears. tf-idf cut off threshold allowed to perform



additional filtering of the frequent words. Further we will call the remaining
words content words.

Afterwards we have created word vectors for all content words w as follows:

1. Initialize a vector −→
w to zero;

2. Find every occurrence of w in WordNet glosses;
3. For each occurrence, search that gloss for words in the word space and in-

crement the dimensions of −→w that correspond to those words.

The basic idea here is to have a matrix of word vectors, where every row
corresponds to a word in the content words list and every column corresponds
to the respective frequencies of each word in the word space.

The final step is to calculate gloss vectors for every synset in WordNet, this
is done by adding the word vectors for each content word in the gloss. For
example, for the gloss vector of clock we have to consider its gloss: a timepiece

that shows the time of day and add the word vectors of timepiece, shows, time

and day. Notice that this is a simplified example because for our experiments we
use extended glosses, thus we had to take into account also the glosses of every
concept connected to clock by a WordNet relation.

Fig. 5. An example of a 2-dimensional space for Word and Gloss vectors for ”cat -
feline mammal usually having thick soft fur and being unable to roar” synset

As soon as gloss vectors are calculated they are stored in a database3. Se-
mantic similarity of two synsets is defined as follows

simcv(c1, c2) = cos(angle(−→v1,−→v2)) (15)

3 Notice that gloss vectors can be calculated once and further reused by semantic
similarity computation algorithm.



where c1 and c2 are the concepts, −→
v1 and −→

v2 are the respective gloss vectors
and angle is the angle between vectors. Eq. 15 can be rewritten using vector
products, it becomes:

simcv(c1, c2) =
−→
v1 · −→v2

|−→v1| |−→v2|
(16)

where at the denominator we have the magnitude4 of the two vectors. Eq. 16 is
a dot product5 between two normalized vectors.

Figure 5 illustrates context vectors similarity in a 2 dimensional space.

The pseudo code of context vector semantic similarity computation algorithm
is as follows:

1 float match( Synset synset1, Synset synset2 )

2 int glossVec1[] = loadGlossVector( synset1 );

3 int glossVec2[] = loadGlossVector( synset2 );

4 float normVec1[] = normalizeVec( glossVec1 );

5 float normVec1[] = normalizeVec( glossVec1 );

6 return dotProduct( normVec1, normVec2 );

Fig. 6. Context vector semantic similarity computation pseudo code

loadGlossVector (line 2-3) loads, from the database, the precomputed gloss
vector for the given synset. normalizeVec (line 4-5) calculates the normalized
form of the given vector. dotProduct (line 6) return the dot product between
two given vectors.

The measure has a lower bound of 0 and an upper bound of 1.

Table 9 illustrates context vectors matcher results with threshold 0.3.

Table 9. Semantic relations produced by the context vectors matcher

Source label Target label Semantic relation

autograph signature ≡

actor actress ≡

robot android ≡

fruit glass Idk

4 The magnitude of vector −→
v is equal to

√
∑

n

i=1
v
2

i
.

5 The dot product between vector −→
v and vector −→

w is −→
v · −→w =

∑

n

i=1
viwi.



4 Gloss based matchers

4.1 The WordNet gloss matcher

The WordNet gloss matcher compares the labels of the first input sense with the
WordNet gloss of the second. First, it extracts the labels of the first input sense
from WordNet. Then, it computes the number of their occurrences in the second
gloss. If this number exceeds a given threshold, ⊑ is returned. Otherwise, Idk is
produced.

The reason why the less general relation is returned comes from the lexical
structure of the WordNet gloss. Very often the meaning of the index words is
explained through a specification of the more general concept. In the following
example, hound (any of several breeds of dog used for hunting typically having

large drooping ears) hound is described through the specification of the more
general concept dog. In this example hound is a dog with special properties
(large drooping ears, used for hunting).

Counting the label occurrences in the gloss does not give a strong evidence of
what relation holds between concepts. For example, WordNet gloss returns the
less general relation for hound and ear in the abovementioned example, which
is clearly wrong.

Table 10 illustrates WordNet gloss matcher results.

Table 10. Semantic relations produced by the WordNet gloss matcher

Source label Target label Semantic relation

hound dog ⊑

hound ear ⊑

dog car Idk

4.2 The WordNet extended gloss matcher

The WordNet extended gloss matcher compares the labels of the first input sense
with the extended gloss of the second. This extended gloss is obtained from the
input sense descendants (ancestors) descriptions in the is-a (part-of) WordNet
hierarchy. A given threshold determines the maximum allowed distance between
these descriptions and the input sense in the WordNet hierarchy. By default,
only direct descendants (ancestors) are considered. The idea of using extended
gloss originates from [2]. Unlike [2], we do not calculate the extended gloss over-
laps measure, but count the number of first input sense labels occurrences in
the extended gloss of the second input sense. If this number exceeds a given
threshold, a semantic relation is produced. Otherwise, Idk is returned. The type
of relation produced depends on the glosses we use to build the extended gloss.
If the extended gloss is built from descendant (ancestor) glosses, then the ⊒ ( ⊑)
relation is produced. For example, the relation holding between the words dog



and breed can be easily found by this matcher. These concepts are not related
in WordNet, but the word breed occurs very often in the dog descendant glosses.

Table 11 illustrates WordNet extended gloss matcher results.

Table 11. Semantic relations produced by the WordNet extended gloss matcher

Source label Target label Semantic relation

dog breed ⊒

wheel mashinery ⊑

dog cat Idk

4.3 The Gloss comparison matcher

Within the Gloss comparison matcher the number of the same words occurring
in the two input glosses increases the similarity value. The equivalence relation
is returned if the resulting similarity value exceeds a given threshold. Idk is
produced otherwise.

Let us try to find the relation holding, for example, between Afghan hound

and Maltese dog using gloss comparison strategy. These two concepts are breeds
of dog, but unfortunately WordNet does not have explicit relation between them.
However, the glosses of both concepts are very similar. Let us compare:

Maltese dog is a breed of toy dogs having a long straight silky white coat.

And:
Afghan hound is a tall graceful breed of hound with a long silky coat; native

to the Near East.

There are 4 shared words in both glosses (breed, long, silky, coat). Hence, the
two concepts are taken to be equivalent. Table 12 illustrates gloss comparison
matcher results. Several modifications of this matcher exist. One can assign a

Table 12. Semantic relations produced by the gloss comparison matcher

Source label Target label Semantic relation

Afghan hound Maltese dog ≡

dog cat Idk

higher weight to the phrases or particular parts of speech than single words [24].
In the current implementation we have exploited the approach used in [24], but
changed the output to be a semantic relation.

4.4 The Extended Gloss comparison matcher

The extended gloss comparison matcher compares two extended glosses built
from the input senses. Thus, if the first gloss has a lot of words in common with



descendant glosses of the second then the first sense is more general than the
second and vice versa. If the extended glosses formed from descendant (ancestor)
glosses of both labels have a lot of words in common (this value is controlled by
a given threshold) then the equivalence relation is returned. For example, dog

and cat are not connected by any relation in WordNet. Comparing the extended
glosses obtained from descendants glosses of both concepts we can find a lot of
words in common (breed, coat, etc). Thus, we can infer that dog and cat are
related (they are both pets), and return the equivalence relation. The relations
produced by the matcher are summarized in Table 13.

Table 13. Semantic relations produced by the extended gloss comparison matcher

Source label Target label Semantic relation

house animal Idk

dog cat ≡

4.5 The Semantic Gloss comparison matcher

The Semantic Gloss comparison matcher maintains statistics not only for the
same words in the input senses glosses (like in Gloss comparison) but also for
words which are connected through is-a (part-of) relationships in WordNet. This
can help finding the gloss relevance not only at the syntactic but also at the
semantic level. In Semantic Gloss Comparison we consider synonyms, less general
and more general concepts what (hopefully) lead to better results.

In the first step the glosses of both senses are obtained. Then, they are com-
pared by checking which relations hold in WordNet between the words of both
glosses. If there is a sufficient amount (in the current implementation this value
is controlled by a threshold) of synonyms the equivalence relation is returned. In
the case of a large amount of more (less) general words, the output is ⊒ (⊑) cor-
respondingly. Idk is returned if we have a nearly equal amount of more and less
general words in the glosses or there are no relations between words in glosses.
Table 14 contains the results produced by semantic gloss comparison matcher.

Table 14. Semantic relations produced by extended gloss comparison matcher

Source label Target label Semantic relation

dog breed ⊒

dog cat Idk

wheel machinery ⊑



5 Evaluation

5.1 The Dataset

We have exploited for evaluation the data set constructed from Google, Yahoo
and Looksmart web directories as described in [1, 34]. This dataset consists of a
set of graph like structures and a set of mappings that holds among the nodes
of the structures often referred as a reference mapping set). The key idea of the
data set construction methodology was to significantly reduce the search space
for human annotators. Instead of considering the full mapping task which is very
big (Google and Yahoo directories have up to 3∗105 nodes each: this means that
the human annotators need to consider up to (3 ∗ 105)2 = 9 ∗ 1010 mappings),
it uses semi automatic pruning techniques in order to significantly reduce the
search space. For example, for the dataset described in [1] human annotators
consider only 2265 mappings instead of the full mapping problem.

The reference mapping set of the dataset contains not only positive but also
negative mappings. It allows to exploit the dataset for evaluation of both recall
and precision. The key difference of the reference mapping [34] in respect to
conventional ones (see [32] for example) is that it does not contain the complete
set of reference mappings. Instead, the reference mapping is composed from two
parts [34]:

– Representative subset of complete reference mapping. It contains the positive
mappings (i.e., the mappings that hold for the matching task).

– Representative subset of negative mappings (i.e., the mappings that does
not hold for the matching task).

The reference mapping is composed from 2265 positive and 2374 negative map-
pings. The dataset was used in OAEI-2005,2006 [8, 7] ontology matching evalu-
ations. Therefore the results of element level matchers can be easily compared
with results shown by the matching systems participated in OAEI evaluations.

5.2 The evaluation methodology

Most of the matchers described in Sections 3 and 4 produce a semantic rela-
tion by comparing an internal similarity measure with the given threshold. In
fact only the WordNet and the WordNet Gloss matchers do not depend on the
threshold values since their results does not depend on the internal similarity
measures. Taking into account the considerations above we have decided to cal-
culate matching quality measures for various values of the thresholds.

We have chosen Precision, Recall and F-Measure as matching quality mea-
sures as the commonly agreed ones. Precision varies in the [0,1] range; the higher
the value, the smaller the set of wrong mappings (false positives) which have been
computed. Precision is a correctness measure. Recall varies in the [0,1] range; the
higher the value, the smaller the set of correct mappings (true positives) which
have not found. Recall is a completeness measure. F-measure varies in the [0,1]
range. The version computed here is the harmonic mean of precision and recall.



Fig. 7. Precision, Recall and F-Measure depending on threshold values for the : (a) Ex-
tended Gloss Comparison; (b) WordNet Extended Gloss; (c) Hirst-St.Onge; (d) Jiang
Conrath; (e) Leacock Chodorow; (f) Lin; (g) Resnik; (h) WordNet Extended Gloss; (i)
Context Vector; (j) Semantic Gloss Comparison matchers



It is global measure of the matching quality, growing with it. This choice opened
to us the possibility to compare the results of element level semantic matchers
with the results of the systems participated in OAEI ontology matching evalua-
tions. We have chosen the best Precision, Recall and F-Measure for the matchers
depending on their threshold values. We also have compared the results of the
matchers with the results of the systems participated in OAEI-2006 ontology
matching evaluation.

Fig. 8. Precision of element level semantic matchers

Fig. 9. Precision of matching systems participated in OAEI-2006 evaluation

Notice that both knowledge and gloss based matchers take two WordNet
synset identifiers as an input. At the same time labels at nodes are expressed
in natural language. Here and further in the paper we assume that all WordNet
synsets are retrieved for the node labels. An element level semantic matcher finds
a semantic relation holding between two given nodes if the matcher returns the
relation for at least one of WordNet synsets pairs in the cross product of the
synsets attached to the given nodes. Word sense disambiguation and filtering
techniques (see [20] for example), in principle, may improve the results of the



matchers (see [10] for detailed discussion). However we have not used them in
this evaluation.

5.3 Discussion

Figure 7 presents the results of the matchers depending on various threshold
values. As form the figure the matchers demonstrate various behaviors depend-
ing on the threshold values. This fact is not surprising taking into account the
different meaning of the threshold values for the different matchers. For example,
for information content based matchers (such as Resnik, Jiang Conrath and Lin
matchers) threshold value corresponds to the certain internal similarity measure
values. At the same time the WordNet Gloss Comparison matcher considers the
threshold as the number of the same words in the glosses of the synsets. The
other observation is that similar matchers demonstrate the similar dependence
on threshold values and even similar results. For example, Jiang Conrath and
Lin matchers demonstrate almost the same results since they are both based on
information content and exploit the similar ways of aggregating the information
content values. In general the matchers demonstrate relatively high values of
matching quality measures.

Fig. 10. Recall of element level semantic matchers

Figure 8 demonstrate the highest Precision values for all the matchers. Notice
that matchers which do not depend on threshold values demonstrate a very high
Precision results. For example, the WordNet Gloss matcher demonstrate the
highest Precision among all the matchers while WordNet demonstrated sixth
result. The second and third results were demonstrated by sophisticated seman-
tic gloss comparison and Hirst - St.Onge matchers. Notice that the Precision
values demonstrated by element level semantic matchers are comparable with
the results of the matching systems on OAEI-2006 ontology matching evalua-
tion. As from Figure 9, the best of the matching systems in OAEI-2006 evalu-
ation demonstrated lower Precision than the best out of element level semantic
matchers. Notice that strictly speaking the results of the matching systems are



Fig. 11. Recall of matching systems participated in OAEI-2006 evaluation

not directly comparable with the results of threshold based matchers. The sys-
tems were evaluated blindly on the dataset [7]. Therefore the authors could not
optimize the threshold values in the same way as we did for threshold based
element level matchers (see Figure 7 for example). However the results illustrate
the importance of WordNet in element level matching. They also emphasize the
importance of the right aggregation strategy choice within the structure based
matchers. Notice also that the matching systems were outperformed by thresh-
old independent element level matcher (WordNet Gloss) whose results can not
be optimized by tuning threshold values and therefore they are comparable with
the systems results.

The Recall of the element level matchers is presented on Figure 10. Simi-

Fig. 12. F-Measure of element level semantic matchers

larly to Precision case the matchers that do not depend on the threshold values
demonstrated the highest results. Recall of the WordNet Gloss matcher was the
best while the WordNet matcher result is the fourth. Semantic gloss comparison
and Hirst - St.Onge matchers demonstrated the second and the third results.
Comparison with matching systems results is presented on Figure 11. As from
the figure most of the element level semantic matchers produce the comparable
to the matching systems results.



Fig. 13. F-Measure of matching systems participated in OAEI-2006 evaluation

A comparison between Figures 8, 10 and Figure 7 shows that the results of
element level semantic matchers are comparable with the results of matching
systems for the wide intervals of threshold values.

The F-Measure values for element level matchers and matching systems are
presented on Figures 12 and 13 respectively. Similarly to Precision and Recall
cases the best element level semantic matcher (WordNet Gloss) outperformed
all the matching systems while all the other demonstrated the comparable per-
formance.

6 Related Work

Development of element level matchers has focused on the variety of works orig-
inating from different communities. The term element level matching was coined
in [26] while [9] introduced the notions of semantic matching and element level
semantic matching. Early work in schema/ontology matching community was
devoted to string based matchers or element level matchers exploiting various
string similarity measures. For example, element level matchers based on Lev-
enstain string edit distance [17] and nGrams have been used in [19, 11]. In [5] a
library of string matching algorithms have been proposed. Among the others it
contained a string edit distance algorithms proposed by Levenstain, Jaro [13],
Winkler [33], Smith-Waterman [30] and string similarity algorithms of Jensen-
Shannon [6], Monge-Elkan [22]. The new string distance metric and element
level matcher implementing it have been proposed in [31]. The authors also eval-
uated the matcher on the subset of the matching tasks exploited in OAEI-2005
[8] evaluation and compared the results with Levenstain, Jaro-Winkler, Modge-
Elkan, nGram, Smith-Waterman and Needleman-Wunsch [23] matchers. Differ-
ently from these matchers the element level semantic matchers described in the
paper return semantic relations (≡,⊑,⊒,⊥,Idk) instead of numerical similarity
coefficients and exploit WordNet as a background knowledge source.

While string based matchers have received a considerable attention in schema
and ontology matching community knowledge and gloss based matchers have
been largely overlooked until the very recent time. The WordNet matcher has



been introduced in [3] and further used in [10]. However the effectiveness of the
matcher was largely unknown. It was not evaluated on its own, out of the systems
comprising also various structure level algorithms. The library of element and
structure level matchers has been recently presented in [35]. The library contains,
among the others, Resnik and Lin matchers. However no qualitative measures
of their effectiveness were reported. Differently from these works we focus on
comparative evaluation of the matchers. The evaluation allows us to compare
usefulness of the various techniques in real world matching scenarios and provides
the useful hints to the system designers.

The measures of semantic similarity and relatedness such as Leacock Chodorow
[16], Resnik [27], Jiang-Conrath [14], Lin [18], Hirst-St. Onge [12], Context Vec-
tors [28, 25], extended gloss [2] have been introduced in the NLP community.
They have been successfully applied to problems of word sense disambiguation,
determining the structure of texts, text summarization and annotation, infor-
mation extraction and retrieval, automatic indexing, lexical selection, and the
automatic correction of word errors in text (see [4] for in depth discussion). Dif-
ferently from these works we are focused on application of the semantic similarity
and relatedness techniques to schema/ontology matching problems.

7 Conclusions

We have presented twelve new element level semantic matchers. The matchers ex-
ploit WordNet as a background knowledge source, and return semantic relations
(≡,⊑,⊒,⊥,Idk) between concepts, rather than similarity coefficients between la-
bels in the [0..1] range. We have evaluated the matchers on large scale real world
dataset extracted from Google, Yahoo and Looksmart web directories. We have
also compared the evaluation results with the results demonstrated by the match-
ing systems in the ontology matching evaluation OAEI-2006. The results of the
element level matchers are found comparable with the results of the matching
systems. The results of this evaluation opened a number of questions regarding
the effectiveness of state of the art structure level matching algorithms. In fact
the WordNet Gloss element level matcher outperformed sophisticated matching
systems comprising a set of both element and structure level matchers.

Future work includes analysis of the state of the art structure level matchers
on various datasets. The results of this work will help to the development of
robust matching algorithms. It also may provide useful insights to development
of iterative and interactive matching systems. They will improve the quality of
the mappings by iterating and by focusing user’s attention on the critical points
where his/her input is maximally useful. These advancements are hardly possible
without a comprehensive testing methodology which is able to estimate quality
of the mappings between schemas with hundreds and thousands of nodes. Initial
steps have already been done; see for details [1]. Here, the key issue is that in
these cases, specifying expert mappings manually is (often) neither desirable nor
feasible task.
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